
THE XML’S OF PEOPLECODE
SESSION 6002

November 13, 2018

1:30PM – 2:30PM

CANADA ALLIANCE 12-14 NOVEMBER 2018

PRESENTER

Adam Woodhouse

PeopleSoft Programmer/Analyst

Fleming College, Ontario

Website: www.flemingcollege.ca

E-mail: adam.woodhouse@flemingcollege.ca

CANADA ALLIANCE 12-14 NOVEMBER 2018

FLEMING COLLEGE

Located in Peterborough,
Ontario, approx 90 min North-
East drive from Toronto.
Fleming was founded in 1967
and named after Sir Sandford
Fleming, the founder of
Universal Standard Time.

CANADA ALLIANCE 12-14 NOVEMBER 2018

FLEMING COLLEGE:

SUTHERLAND CAMPUS

Located in Peterborough is
Flemings main campus.
Notable programs are
Police, Fire, Paramedic,
Culinary, Computer
Security & Investigations.

CANADA ALLIANCE 12-14 NOVEMBER 2018

FLEMING COLLEGE:

FROST CAMPUS

Located in Lindsay is the School of
Environmental & Natural Resource
Sciences. Notable programs are
Fish & Wildlife, Heavy Machinery,
Geographic Information Systems,
Urban Forestry and the Centre for
Advancement of Water &
Wastewater Technologies.

CANADA ALLIANCE 12-14 NOVEMBER 2018

FLEMING COLLEGE:

HALIBURTON CAMPUS

Located in the beautiful
Haliburton Highlands is the
School of Arts + Design. A
leader in unique arts programs
like Glass Blowing, Blacksmith,
Digital Imaging, Photo Arts,
Visual & Creative Arts.

CANADA ALLIANCE 12-14 NOVEMBER 2018

OUR PEOPLESOFT

ENVIRONMENT

Human Capital 9.2

Campus Solutions 9.2

Finance 9.2

PeopleTools 8.55.20

Oracle 12c

CANADA ALLIANCE 12-14 NOVEMBER 2018

OVERVIEW

In this session I will be covering the way Fleming College
implemented a bolt-on solution to import and export XML
files (also called a XML Message or XML Document).

The goods:

1. Who we do the data exchange with and why XML

2. Coding sample of the importing of XML files

3. Coding sample of the exporting of XML files

CANADA ALLIANCE 12-14 NOVEMBER 2018

PRESENTATION GOAL

The goal of this presentation is to help PeopleSoft
developers implement custom bolt-on programs
for the purpose of XML data exchanges using

PeopleSoft’s Application Engine.

CANADA ALLIANCE 12-14 NOVEMBER 2018

THE WHO & WHY Why a custom bolt on to
exchange XML files?

CANADA ALLIANCE 12-14 NOVEMBER 2018

WHO IS OCAS?

� OCAS is an organization that is the focal point for students to apply
to Ontario colleges

� OCAS = Ontario College Application Service

� Not only do student apply to Ontario colleges via OCAS, colleges
exchange student information with other colleges via OCAS (i.e.
student transcripts)

� OCAS sets the standard for how data will be exchanged with them

� Previously the 3rd party software EDI was licensed to exchange data
between colleges and OCAS. The exchange was a text flat file

� OCAS is now pushing for all colleges to use the American PESC XML
standard (Postsecondary Electronic Standards Council).

CANADA ALLIANCE 12-14 NOVEMBER 2018

WHAT’S XML DEAL? An intro to XML

CANADA ALLIANCE 12-14 NOVEMBER 2018

XML BASICS

� Let me share a few basic tidbits about XML from the website
https://www.w3schools.com/xml

� XML stands for eXtensible Markup Language

� XML is Extensible
� Most XML applications will work as expected even if new data is added or

removed from the XML file and the application reading the file isn’t changed to
accommodate

� XML’s presentation is much like HTML

� XML was designed to store and transport data

� XML was designed to be self-descriptive.

CANADA ALLIANCE 12-14 NOVEMBER 2018

XML BASICS

With HTML (designed to display data), we work with predefined tags:

<html>
<body>
<h1 style="font-family:verdana;">This is a heading</h1>
<p style="font-family:courier;">This is a paragraph.</p>
</body>
</html>

CANADA ALLIANCE 12-14 NOVEMBER 2018

You create the
names of the tags

With XML (designed to carry data), we define the tags as we see fit:

<thisisthebook>
<booktitle>XML and PeopleSoft</booktitle>
<bookpublisher>Oracle Publishers</bookpublisher>
<yearofrelease>2018</yearofrelease>
<ISBNcode>123091209382</ISBNcode>
<theblahblahblah>Misc text</theblahblahblah>

</thisisthebook>

BASIC XML LAYOUT

The most common terminology used:

<message>

<to>Adam</to>

<from>Sandy</from>

<heading>Reminder</heading>

<body>Have the weekend plans changed?</body>

</message>

CANADA ALLIANCE 12-14 NOVEMBER 2018

Root/Parent Node

Child Node/Element

Opening Tag Closing Tag

notes: i. XML tags are case sensitive

ii. The opening and closing tag of a node must be the same

iii. Make the tags something meaningful to the data it represents

XML INSTRUCTIONS – MY PROJECT

� At the beginning of the project we were
provided instructions on the layout (schema) of the
XML file

� Being new to XML I found the schema diagram
confusing to interpret

� It was a single diagram spread across several
pages in a PDF

CANADA ALLIANCE 12-14 NOVEMBER 2018

SMALL PIECE OF SCHEMA DIAGRAM

CANADA ALLIANCE 12-14 NOVEMBER 2018

XML INSTRUCTIONS

� I found the schema diagram presented many questions
such as how many times a certain piece of data could
occur, its type, what constitutes a valid value, etc

� Fortunately in addition to the schema illustration we
received a document that represented the XML layout in a
traditional file format presentation (a table) which helped
me to better visualize what the file could* contain

CANADA ALLIANCE 12-14 NOVEMBER 2018

* I say could contain because if a piece of data isn’t mandatory, an XML file may

not include that data or its tags; unlike in a comma delimited file where the field

would still exist but have no value.

� Here is a small piece from the previous schema diagram

SMALL PIECE OF SCHEMA DIAGRAM

CANADA ALLIANCE 12-14 NOVEMBER 2018

� This was in the 2nd document

SMALL PIECE OF SCHEMA DIAGRAM

CANADA ALLIANCE 12-14 NOVEMBER 2018

� When I looked at the sample XML file provided I saw this at the top
of the file:

<Header>

<CollegeCode>SSFL</CollegeCode>

<TransmissionDateTime>2018-08-03T09:42:30</TransmissionDateTime>

</Header>

� When previously in the flat text file the data would look something
like this:

HSSFL20180803T094230

XML HEADER SAMPLE

CANADA ALLIANCE 12-14 NOVEMBER 2018

Header
Indicator

SAMPLE DATA & PEOPLECODE Using App Engine to
upload multiple XML files

CANADA ALLIANCE 12-14 NOVEMBER 2018

<Student_Data>

<Applicant>

<ID>123456</ID>

<Demographic>

<FirstName>Frankie</FirstName>
<LastName>Bates</LastName>
<Gender>M</Gender>
<BirthDate>1960-03-01</BirthDate>

</Demographic>

<Email>

<EmailAddress>personal@gmail.com</EmailAddress>
<EmailAddress>work@hotmail.com</EmailAddress>

</Email>

</Applicant>

</Student_Data>

XML DATA SAMPLE

CANADA ALLIANCE 12-14 NOVEMBER 2018

Root node.
Only occurs once

This parent node will
repeat for each student

A Student

FIELDS

EMPLID

LASTNAME

FIRSTNAME

THE DESTINATION RECORDS

CANADA ALLIANCE 12-14 NOVEMBER 2018

� FC_STUDENT

� FC_EMAIL

FIELDS

EMPLID

EMAIL_ADDRESS

LOAD XML FILE - PSEUDOCODE

� This is a high level of what the App Engine will do

Create the instance of an XML object
Create a log file
Count how many XML files there are for this upload
Loop through XML files

Point to the XML file
Count how many students exist in the XML file
Loop through each student

Load basic student data in custom STUDENT record
Write to log file
Count occurrences of email address
Loop through each email address

Load student email in custom EMAIL record
Write to log file

End email loop
End student loop

End XML file loop

CANADA ALLIANCE 12-14 NOVEMBER 2018

� I wrote an App Engine to process XML files

� There are many different ways an App Engine can be constructed to process
an XML file

� I choose the simplest route and did the processing in a single Step

PEOPLECODE – APP ENGINE

CANADA ALLIANCE 12-14 NOVEMBER 2018

PEOPLECODE TO LOAD A XML FILE

� What follows is the PeopleCode to load a simple XML file into two
PeopleSoft records

Local XmlDoc &inXMLDoc;
Local XMLNode &StudentInfo;
Local boolean &return_code;
Local array of XmlNode &Node_arrApplicant, &Node_arrEmailAddress;

/* Define a log file to record the raw data */

&LOGFILE = GetFile("/fileserver_path/xml_raw_data_log_file.txt", "W",
%FilePath_Absolute);

&LOGFILE.WriteLine("Start of Process" | %Datetime);

&LOGFILE.WriteLine(" ");

CANADA ALLIANCE 12-14 NOVEMBER 2018

PEOPLECODE TO LOAD A XML FILE

/* In this example we have received multiple XML files. */
/* Build an array of the file names so that we can loop through them. */

&arrFILES = FindFiles ("/fileserver_path/students_file*.xml", %FilePath_Absolute);

&FILECOUNT = &arrFILES.Len; /* How many occurrences of the XML files exist. */

&LOGFILE.WriteLine("Number of files to process = " | &FILECOUNT);

&LOGFILE.WriteLine(" ");

/* Define objects to be used */

&inXMLDoc = CreateXmlDoc(""); /* Instantiate an XML object */

&FC_STUDENT = CreateRecord(Record.FC_STUDENT); /* We will load demographic
data to this PeopleSoft record */
&FC_EMAIL = CreateRecord(Record.FC_EMAIL); /* We will load e-mail data to this
Peoplesoft record */

CANADA ALLIANCE 12-14 NOVEMBER 2018

PEOPLECODE TO LOAD A XML FILE

/* Loop through each XML file */

For &loop_files = 1 To &FILECOUNT

&READFILE = GetFile(&arrFILES.Shift(), "R", %FilePath_Absolute); /* Get the XML file
from the array. */

&FILENAME = &READFILE.Name;

&LOGFILE.WriteLine(“XML File = " | &FILENAME);

/* Establish the input file is an XML document */

&return_code = &inXMLDoc.ParseXmlFromURL(&FILENAME);

/* Recognize the XML document nodes */

&InputFile = &inXMLDoc.DocumentElement;

CANADA ALLIANCE 12-14 NOVEMBER 2018

PEOPLECODE TO LOAD A XML FILE

If &return_code Then /* If a valid XML file, continue */

&LOGFILE.WriteLine(“File passed XML parser, processing … “);

/* How many students are in this file to be processed? */

&Node_arrApplicant = &InputFile.GetElementsByTagName(“Applicant");

&LOGFILE.WriteLine("Students to process (occurrences of node <Applicant>) = " |
&Node_arrApplicant.Len);

/* Perform the below loop for every instance of a student (the occurrence of <Applicant>) */

For &I = 1 To &Node_arrApplicant.Len /* Loop through every occurrence of a student */

&StudentInfo = &Node_arrApplicant.Get(&I); /* Point the object &StudentInfo to the student
in the XML file we are processing */

&Node_ID = &StudentInfo.FindNode("ID"); /* Find node ID */

&FC_STUDENT.EMPLID.Value = &Node_ID.NodeValue; /* Move the data in node ID to the
record.field */

&LOGFILE.WriteLine(“XML <ID> = " | &Node_ID.NodeValue);

CANADA ALLIANCE 12-14 NOVEMBER 2018

PEOPLECODE TO LOAD A XML FILE

/* Navigate to node Demographic and process child nodes */

&Node_Demographic = &StudentInfo.FindNode("Demographic"); /* Find node Demographic */

&Node_FirstName = &Node_Demographic.FindNode(“FirstName"); /* Find node FirstName */

&FC_STUDENT.FIRSTNAME.Value = &Node_FirstName.NodeValue; /* Move the data in node
FirstName to the record.field */

&LOGFILE.WriteLine(“XML <FirstName> = " | &Node_FirstName.NodeValue);

&Node_LastName = &Node_Demographic.FindNode(“LastName"); /* Find node LastName */

&FC_STUDENT.LASTNAME.Value = &Node_LastName.NodeValue; /* Move the data in node
LastName to the record.field */

&LOGFILE.WriteLine(“XML <LastName> = " | &Node_LastName.NodeValue);

note: same process would apply for Gender and DOB. But … if we didn’t code for

those nodes it wouldn’t matter to the program, the program would still run!

CANADA ALLIANCE 12-14 NOVEMBER 2018

PEOPLECODE TO LOAD A XML FILE

/* Write to the database the values for the record FC_STUDENT. */

If &FC_STUDENT.Insert() = False Then

&LOGFILE.WriteLine(“The insert to the record FC_STUDENT failed for EMPLID = ” |
&Node_ID.NodeValue);

End-If;

/* The next piece of code is to read the e-mail addresses */

CANADA ALLIANCE 12-14 NOVEMBER 2018

<Student_Data>

<Applicant>

<ID>13551321231</ID>

<Demographic>

<FirstName>Frankie</FirstName>
<LastName>Bates</LastName>
<Gender>M</Gender>
<BirthDate>1960-03-01</BirthDate>

</Demographic>

<Email>

<EmailAddress>personal@gmail.com</EmailAddress>
<EmailAddress>work@hotmail.com</EmailAddress>

</Email>

</Applicant>

</Student_Data>

XML DATA SAMPLE

CANADA ALLIANCE 12-14 NOVEMBER 2018

PEOPLECODE TO LOAD A XML FILE

/* For multiple e-mail nodes, we need to see how many occurrences and loop through them. */

&FC_EMAIL.EMPLID.Value = &Node_ID.NodeValue; /* Use this earlier established node */
&Node_Email = &StudentInfo.FindNode(“Email"); /* Find parent node Email */

&Node_arrEmailAddress = &Node_Email.FindNodes(“EmailAddress”); /* Find child nodes */

For &E = 1 to &Node_arrEmailAddress.Len /* Loop through all of the EmailAddress nodes */

&Node_EmailAddress = &Node_arrEmailAddress.Get(&E);

&FC_EMAIL.EMAIL.Value = &Node_EmailAddress.FindNode(“EmailAddress”).NodeValue;
If &FC_EMAIL.Insert() = False Then

&LOGFILE.WriteLine(“The insert to the record FC_EMAIL failed for EMPLID = ” |
&Node_ID.NodeValue);

End-If;

End-For; /* For &E = 1to &Node_arrEmailAddress.Len - loop through email addresses */

End-For; /* For &I = 1 To &Node_arrApplicant.Len – loop through each student */

End-If; /* If &return_code Then – checked to see if a XML file */

CANADA ALLIANCE 12-14 NOVEMBER 2018

� FC_STUDENT

� FC_EMAIL

EMPLID LAST_NAME FIRST_NAME

13551321231 Bates Frankie

THE DATA WRITTEN TO 2 TABLES

CANADA ALLIANCE 12-14 NOVEMBER 2018

EMPLID EMAIL_ADDR

13551321231 personal@gmail.com

13551321231 work@hotmail.com

CREATING A XML FILE Using App Engine to create
a single XML file

CANADA ALLIANCE 12-14 NOVEMBER 2018

� FC_STUDENT

� FC_EMAIL

EMPLID LAST_NAME FIRST_NAME

12345 Woodhouse Adam

12346 Smith Joe

THE DATA FOR OUR OUTPUT XML FILE

CANADA ALLIANCE 12-14 NOVEMBER 2018

EMPLID EMAIL_ADDR

12345 adam@gmail.com

12345 adam@hotmail.com

12346 joe@abcompany.copm

<?xml version="1.0" encoding="UTF-8"?>
<Student_Data>

<Applicant>
<ID>12345</ID>
<Demographic>

<FirstName>Woodhouse</FirstName>
<LastName>Adam</LasttName>

</Demographic>
<Email>

<EmailAddress>adam@gmail.com</EmailAddress>
<EmailAddress>adam@hotmail.com</EmailAddress>

</Email>
</Applicant>

<Applicant>
<ID>12346</ID>
<Demographic>

<FirstName>Smith</FirstName>
<LastName>Joe</LasttName>

</Demographic>
<Email>

<EmailAddress>joe@abcompany.com</EmailAddress>
</Email>

</Applicant>

</Student_Data>

XML FILE WE ARE GOING TO CREATE

CANADA ALLIANCE 12-14 NOVEMBER 2018

Data come from
FC_STUDENT

Data come from
FC_EMAIL

Student 1

Student 2

Root node

Declaration node

APP ENGINE – CREATE XML FILE

� In the previous example of importing a XML file I
did everything in one App Engine Step

� In creating a XML file my App Engine has several
Steps

� Several Steps are needed to use the App Engine
Step “Do Select” SQL

� Each SQL Step will read all data needed for a
related group of XML nodes

� The PeopleCode in the Step after the SQL will
generate the XML nodes.

CANADA ALLIANCE 12-14 NOVEMBER 2018

PEOPLECODE TO CREATE XML FILE

Instantiate the XML object
Define the output file location and name

Select all of the students

Create Demographic nodes

Select the current students email

Create EmailAddress nodes

Write the XML

Read
FC_STUDENT

Read
FC_EMAIL

CANADA ALLIANCE 12-14 NOVEMBER 2018

PEOPLECODE TO CREATE XML FILE

� The first Step to instantiate the XML file and define the root node

Global XmlDoc &outXMLDoc;

Global File &XMLFile;

Global XmlNode &Student_Node; /* NOTE: this node is referenced elsewhere, so must define. */

&filename = "/fileserver_path/output_file.xml"; /* Define the output file string */

&XMLFile = GetFile(&filename, "W", %FilePath_Absolute); /* Initialize the outbound file object */

&outXMLDoc = CreateXmlDoc(""); /* Instantiate a XML document */

MessageBox(0, "", 0, 0, "Created XML file: " | &filename); /* Add details to the job log */

&Student_Node = &outXMLDoc.CreateDocumentElement("Student_Data"); /* This is the root node */

CANADA ALLIANCE 12-14 NOVEMBER 2018

<?xml version="1.0" encoding="UTF-8"?>
<Student_Data>

<Applicant>
<ID>12345</ID>
<Demographic>

<FirstName>Woodhouse</FirstName>
<LastName>Adam</LasttName>

</Demographic>
<Email>

<EmailAddress>adam@gmail.com</EmailAddress>
<EmailAddress>adam@hotmail.com</EmailAddress>

</Email>
</Applicant>

<Applicant>
<ID>12346</ID>
<Demographic>

<FirstName>Smith</FirstName>
<LastName>Joe</LasttName>

</Demographic>
<Email>

<EmailAddress>joe@abcompany.com</EmailAddress>
</Email>

</Applicant>

</Student_Data>

XML FILE WE ARE GOING TO CREATE

CANADA ALLIANCE 12-14 NOVEMBER 2018

Student 1

Student 2

The header declaration is automatically added

PEOPLECODE TO CREATE XML FILE

� The second Step after the SQL is to create the Demographic node & start the Email nodes

/* Populate the XML file with the students Demographics details. Each student is its own Applicant node */

Global XmlDoc &outXMLDoc;
Global File &XMLFile;
Global XmlNode &Student_Node, &Email_Node; /* NOTE: nodes are referenced elsewhere, so must define. */

MessageBox(0, "", 0, 0, "Processing student: " | FC_STUDENT_AET.EMPLID); /* Add details to the job log */

&Applicant_Node = &Student_Node.AddElement("Applicant");
&ID_Node = &Applicant_Node.AddElement("ID");
&textNode = &ID_Node.AddText(FC_STUDENT_AET.EMPLID); /* FC_STUDENT_AET is populated in the SQL step */

&Demographic_Node = &Applicant_Node.AddElement("Demographic"); /* Parent */
&FirstName_Node = &Demographic_Node.AddElement("FirstName"); /* Child */
&textNode = &FirstName_Node.AddText(FC_STUDENT_AET.FIRST_NAME);
&LastName_Node = &Demographic_Node.AddElement("LastName"); /* Child */
&textNode = &LastName_Node.AddText(FC_STUDENT_AET.LAST_NAME);

/* Create the Email parent node */

&Email_Node = &Applicant_Node.AddElement("Email"); /* Parent */

CANADA ALLIANCE 12-14 NOVEMBER 2018

<?xml version="1.0" encoding="UTF-8"?>
<Student_Data>

<Applicant>
<ID>12345</ID>
<Demographic>

<FirstName>Woodhouse</FirstName>
<LastName>Adam</LasttName>

</Demographic>
<Email>

<EmailAddress>adam@gmail.com</EmailAddress>
<EmailAddress>adam@hotmail.com</EmailAddress>

</Email>
</Applicant>

<Applicant>
<ID>12346</ID>
<Demographic>

<FirstName>Smith</FirstName>
<LastName>Joe</LasttName>

</Demographic>
<Email>

<EmailAddress>joe@abcompany.com</EmailAddress>
</Email>

</Applicant>

</Student_Data>

XML FILE WE ARE GOING TO CREATE

CANADA ALLIANCE 12-14 NOVEMBER 2018

Student 1

Student 2

PEOPLECODE TO CREATE XML FILE

� The third Step after the read e-mail SQL is to create the Email node

/* Populate the XML file with the students email details (the <EmailAddress> nodes). */

Global XmlDoc &outXMLDoc;
Global File &XMLFile;
Global XmlNode &Email_Node;

&EmailAddress_Node = &Email_Node.AddElement("EmailAddress"); /* Child */

&textNode = &EmailAddress_Node.AddText(FC_EMAIL_AET.EMAIL_ADDR);

CANADA ALLIANCE 12-14 NOVEMBER 2018

<?xml version="1.0" encoding="UTF-8"?>
<Student_Data>

<Applicant>
<ID>12345</ID>
<Demographic>

<FirstName>Woodhouse</FirstName>
<LastName>Adam</LasttName>

</Demographic>
<Email>

<EmailAddress>adam@gmail.com</EmailAddress>
<EmailAddress>adam@hotmail.com</EmailAddress>

</Email>
</Applicant>

<Applicant>
<ID>12346</ID>
<Demographic>

<FirstName>Smith</FirstName>
<LastName>Joe</LasttName>

</Demographic>
<Email>

<EmailAddress>joe@abcompany.com</EmailAddress>
</Email>

</Applicant>

</Student_Data>

XML FILE WE ARE GOING TO CREATE

CANADA ALLIANCE 12-14 NOVEMBER 2018

Student 1

Student 2

PEOPLECODE TO CREATE XML FILE

Select all of the students

Create Demographic nodes

Select the current students email

Create EmailAddress nodes

Read
FC_STUDENT

Read
FC_EMAIL

� Once the <Applicant> node is built, the App Engine continues to loop through
all rows found in Step 1: Step01 “Do Select”

CANADA ALLIANCE 12-14 NOVEMBER 2018

PEOPLECODE TO CREATE XML FILE

Read
FC_STUDENT

Read
FC_EMAIL

� When all rows have been processed Step 2: Step03 is executed which writes
the XML file.

Write the XML

CANADA ALLIANCE 12-14 NOVEMBER 2018

PEOPLECODE TO CREATE XML FILE

� The last Step is to finalize the XML and write the file

/* Format the XML content, replace the declaration tag and write to network share */

Global XmlDoc &outXMLDoc;
Global File &XMLFile;

&XMLString = &outXMLDoc.GenFormattedXmlString(); /* Format the content into structured XML */

/* Search the XML string and replace the declaration tag with new text */

&XMLString = Substitute(&XMLString, "<?xml version=""1.0""?>", "<?xml version=""1.0"" encoding=""UTF-
8""?>"); /* A great technique if we need to customize the header declaration tag */

&XMLFile.WriteLine(&XMLString); /* Populate & write the XML object with the formatted XML content */

&XMLFile.Close();

CANADA ALLIANCE 12-14 NOVEMBER 2018

<?xml version="1.0" encoding="UTF-8"?>
<Student_Data>

<Applicant>
<ID>12345</ID>
<Demographic>

<FirstName>Woodhouse</FirstName>
<LastName>Adam</LasttName>

</Demographic>
<Email>

<EmailAddress>adam@gmail.com</EmailAddress>
<EmailAddress>adam@hotmail.com</EmailAddress>

</Email>
</Applicant>

<Applicant>
<ID>12346</ID>
<Demographic>

<FirstName>Smith</FirstName>
<LastName>Joe</LasttName>

</Demographic>
<Email>

<EmailAddress>joe@abcompany.com</EmailAddress>
</Email>

</Applicant>

</Student_Data>

XML FILE WE CREATED

CANADA ALLIANCE 12-14 NOVEMBER 2018

Student 1

Student 2

SUMMARY

� We talked about how XML files are
structured and the benefits

� We reviewed an example on
how to import a file using
PeopleSoft’s App Engine

� We reviewed an example
on how to export a file using
PeopleSoft’s App Engine

CANADA ALLIANCE 12-14 NOVEMBER 2018

THANK YOU!

CANADA ALLIANCE 12-14 NOVEMBER 2018

PRESENTER

Adam Woodhouse

Programmer/Analyst

Fleming College, Ontario

Website: www.flemingcollege.ca

E-mail: adam.woodhouse@flemingcollege.ca

ALL ALLIANCE PRESENTATIONS WILL BE AVAILABLE FOR

DOWNLOAD FROM THE CONFERENCE SITE

CANADA ALLIANCE 12-14 NOVEMBER 2018

