-

ALLIANCE

DOWN UNDER

USC'S HOME GROWN IDENTITY | sessionscoas

Thu, Nov 10, 2016

DATA HUB (1:30 PM — 2:15 PM)

ADU 9-11 NOVEMBER 2016

PRESENTER

Jay Mathew

Senior Business Systems Analyst
University of the Sunshine Coast

imathew@usc.edu.au

ADU 9-11 NOVEMBER 2016

UNIVERSITY OF THE SUNSHINE | aenensins
COAST | ser

ADU 9-11 NOVEMBER 2016

Presenter
Presentation Notes
We are a relatively small university but are growing rapidly. Our main campus is at Sippy Downs in the Sunshine Coast. But we also have other campuses on the Fraser Coast (Hervey Bay), Noosa and Gympie. We also teach USC courses at Southbank TAFE in Brisbane and are collaborating with ATMC (Australian Technical & Management College) to expand our offerings for international students (located in Melbourne and Sydney).

In the last open enrolment period USC has had 11,602 student enrolments and we currently have 906 staff members.

PEOPLESOFT

PeopleSoft HCM 9.0 & Campus Solutions 9.0
PeopleTools 8.54.07

Windows Server 2012 R2

Microsoft SQL Server 2014

© University of the Sunshine Coast ADU 9-11 NOVEMBER 2016

Presenter
Presentation Notes
USC is currently in the process of upgrading from HCM 9.0 to 9.2 on PeopleTools 8.55.11

| OVERVIEW

Data Hub
earlier
prototypes

Data Hub
Technical
Architecture

Data Hub
Deployment
and Monitoring

Challenges and

Next Steps

ADU 9-11 NOVEMBER 2016

DATA HUB EARLIER | |
PROTOTYPES | ="

earnings from earlier

PROTOTYPE #1

* Create provisioning views
in both PeopleSoft HCM
and CS

* To be queried every 2-5
minutes by ldentity
Management solution

ADU 9-11 NOVEMBER 2016

PROTOTYPE #2

Fire messages to the Data Hub
via Integration Broker

Impact analysis required

Need to fire IB messages via PeopleCode
on save events

Need to fire messages on SQR and COBOL
person detail updates. Messages wouldn’t
be real-time.

Requires ongoing re-evaluation every
time a new Pl is released

ADU 9-11 NOVEMBER 2016

DATA HUB FINAL CONCEPT | A tecticat overvew

DATA HUB FINAL CONCEPT

Centralised database (running on MS SQL Server 2014)
that hosts person identity data for subscribing systems.

|dentity data is sourced from both PeopleSoft and non-
PeopleSoft systems

Data is updated in near real-time using SQL Server
technologies.

© University of the Sunshine Coast ADU 9-11 NOVEMBER 2016

DATA HUB INTERACTION

Students

[
.-.

Notify

Publishers
Y| Real time
event notification
Campus Solutions
Consolidate
Data
Human Capital Real time
Management event notification
Maintain
Staff Data

. . . (batch process)

Real time
event notification

00O

© University of the Sunshine Coast

Data Hub

Transform

Current Data

Share

subseribe

Subscribe

Sllbsg,-ib "

Subscribers

Forefront
Identity Manager

Space and Asset
Management

(o]

Presenter
Presentation Notes
A key difference between other Data Hub implementations is that the Data Hub does not create any internal IDs. The EMPLID from PeopleSoft is used by the Data Hub (mapped to a field called person_id).

DATA HUB REAL-TIME TECHNOLOGIES

Leverages Microsoft SQL Server technologies
Change Data Capture

Provides the ability to track data changes (add, update, delete) in database tables
PS_ACAD_PROG CDC table add example:

TIME

2016-11-01 03:00:58.473
2016-11-01 03:00:58.473
2016-11-01 03:00:58.473
2016-11-01 03:00:58.557
2016-11-01 03:00:58.557
2016-11-01 03:00:58.557
2016-11-01 03:01:00.310
2016-11-01 03:01:00.310
2016-11-01 03:01:00.310
2016-11-01 03:01:00.393

OPERATION
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add

EMPLID

1100004
1100004
1100004
1102440
1102440
1102440
1074150
1074150
1074150
1098378

Service Broker
Provides a framework for the reliable transmission of messages between SQL Server databases

a a
m_.ﬁ._ m'm._%

ACAD_CAREER

PGRD
PGRD
PGRD
PGRD
PGRD
PGRD
UGRD
UGRD
UGRD
UGRD

STONT_CAR_MBR

QNN MNMOGQoQ 2 a2

Post office

EFFDT

2016-10-31 00:00:00.000
2016-10-31 00:00:00.000
2016-11-01 00:00:00.000
2016-10-31 00:00:00.000
2016-10-31 00:00:00.000
2016-11-01 00:00:00.000
2016-10-28 00:00:00.000
2016-10-31 00:00:00.000
2016-11-01 00:00:00.000
2016-10-31 00:00:00.000

Mail truck

EFFSEQ

—_ e e b RS e o RS —

ACAD_PROG
BU710
BU710
BU710
BUS10
BU210
BUS10
ART01
ART01
AR101
SC391

Post office

FROG_STATUS
AP
AD
AC
AP
AD
AC
AP
AD
AC
AP

PROG_ACTION
APPL
ADMT
MATR
APPL
ADMT
MATR
APPL
ADMT
MATR
APPL

PROG_REASON

3
ONL

23
ONL
1PRF
3
ONL
1PRF

CAMPUS
SIPPY
SIPPY
SIPPY
SIPPY
SIFPY
SIPPY
SIPPY
SIPPY
SIPPY
SIPPY

REAL-TIME SCENARIQ

Campus Solutions Data Hub

Change
9 data Staging table for
5 PS_EMAIL_ADDRESSES
CDC table for Trigger
PS_EMAIL_ADDRESSES Student E i
Send XML message 6 udent Email
to Service Broker Service Service Stored Procedure
initiator queue Broker B
Send to
Service Broker Fire relevant stored
4 CDC records transaction in target queve procedure to handle 8 10 Change PERSON_EMAIL_ADDRESSES
CDC table message data
7
3 i Generic
Transaction
pCDC Lo Stored Procedure
rocess g .
CDC detects “Internal Activation”
change

process to inspect

message
2 Transaction log

records change

® .

PS_EMAIL_ADDRESSES

Student updates email address

© University of the Sunshine Coast

Presenter
Presentation Notes
The Data Hub solution has been written entirely using SQL Server technologies. The Data Hub Database is currently deployed on a SQL Server 2014 instance, and its corresponding connected databases are also running on SQL Server 2014 instances. The overall solution comprises triggers, stored procedures, and linked servers used in conjunction with two SQL Server Technologies, namely, Change Data Capture (CDC) and Service Broker (SB). CDC provides the ability to capture data changes in PeopleSoft database tables, whilst SB provides a framework for the reliable transmission of messages between SQL Server databases.

The flow can be described as follows:
1. Student accepts an offer, creating a row in the PS_EMAIL_ADDRESSES table
2. The transaction is stored in SQL Server’s transaction log
3. CDC (Change Data Capture) has been set up to detect changes in the PS_EMAIL_ADDRESSES table, and therefore detects the new row addition in the transaction log
4. CDC records the new row addition in its corresponding CDC table (cdc.dbo_PS_EMAIL_ADDRESSES_CT)
5. A trigger has been set up on the CDC table to send an XML message containing the transaction (i.e. an update row transaction on the PS_EMAIL_ADDRESSES table) to the Data Hub, using Service Broker. The XML message is sent to a Service Broker initiator queue still residing on the SIS database.
6. Service Broker then sends the XML message to a target queue on the Data Hub database.
7. A Service Broker “internal activation” occurs, calling a stored procedure to inspect the message.
8. The stored procedure calls the relevant handler stored procedure to process the message.
9. The handler stored procedure inserts a row into the PS_EMAIL_ADDRESSES staging table and then inserts a transformed row into the PERSON_ACADEMIC_PROGRAMS table.
The advantage of placing a trigger on the CDC table over placing the trigger directly on the PS_EMAIL_ADDRESSES table is that the student’s experience will not be affected by the transaction. If the trigger were to be placed directly on the PS_EMAIL_ADDRESSES table, the student would have to wait for the trigger to transform the message into XML and then send the message to the Service Broker Initiator queue. While this may not necessarily take a long time for this particular use case, it should be noted that other processes (especially those that perform bulk updates of data) would be severely impacted if they had to wait for a trigger to transform each bulk update into an appropriate XML message for transmission to the Data Hub.

PERSON INFORMATION

USC’s Data Hub contains data for the following:
all students (past and present)
active staff
active POls (staff and student)

PERSON IDENTITY DATA

Roger Ramjet (1000134)
Relationships: STAFF, STUDENT_ALUMNI

Data last synchronised at 2/11/2016 1:42:54 PM

Metwork Accounts Email Addresses
10001324500

B rramiT
B 72753494

Staff Library Account n r2753494@usc.edu.au

Staff Network Account n roger_ramjet@hes_our_man.com

Student Network Account B rramjet@usc.edu.au

Jobs
Job Number Position Number Primary Job? Job Type Job Category Employment Type Department ID
0 00000007 Y staff APT Full-time 070

Academic Programs

Academic Career Academic Career Seq Academic Program

UGRD 4] RO331 (Bachelor of Rocketeering)

Academic Degrees
Degree Number Degree

01 RO331 (Bachelor of Racketeering)

© University of the Sunshine Coast

CAMP
OTHR

STAF

Manager Position Number

00000533

Program Status

M

Academic Career

UGRD

Organisation

Phone Numbers

B 0755555555 BUSN
0400000000 CELL

07 77ITITIT UNIV

a
a 07 9999 0999 PERM
[+

Full Time Equivalence Commencement Date Termination Date

1.000000 9/03/2015

Program Action Program Reason

COMP

Degree Conferral Date

20/04/2001

RELATIONSHIP TYPES

STUDENT

STUDENT_POI

STAFF
STAFF_OFFEREE

STAFF_POI

STUDENT_ALUMNI
STUDENT_APPLICANT
STUDENT_OFFEREE

STUDENT_DISCONTINUED

© University of the Sunshine Coast

The person is an active student (i.e. currently active or deferred in a
program)

The person is a student POI

The person is an active staff member

The person has been offered a staff position, but has not yet accepted
the offer
The person is a staff POI

The person is a student alumni (i.e. has obtained one or more degrees
at the university)

The person is a student applicant (i.e. is currently applying to study in a
program)

The person has been offered a place in a program, but has not yet
accepted the offer

The person was a student that has discontinued an academic program

and has no other active programs and has not completed any degrees

Presenter
Presentation Notes
STUDENT_POI examples: A student from a partner institution, student studying the English language.
STAFF_POI examples: Contractors, Visiting Academics

DATA HUB SCHEMA

A s e
official_grace VARCHAR3)

mark VARCHAR(3) ¥ persan_id VARCHAR(11)

36 tables

| PERSON_ACCOUNTS 7
accounit_name VARCHAR(30)

grode_date DATETIME
grading_basis VARCHAR()
grading_schema VARCHAR(3}
‘acadernic_program VARCHAR(S)
last_source_transaction_date DAT...

relationship_type VARCHAR(30)
last_scarce_transaction_date DATETIME
creation_date DATETIME

created_by VARCHAR(20)
last_update_date DATETIME

account_type VARCHAR(30) creation_date DATETIME last_updated_by VARCHAR(20}] PERSON_JOBS v
< person_id VARCHAR(11) craated_by VARCHAR(20) deleted_date DATETIME ¥ person_id VARCHAR{11)
P E R S O N 1.0 b I es k e y e d Exqpiration_date DATETIME last_update_date DATETIME deleted] by VARCHAR(20) job_nusmber INT
lnst_source_transaction_date DA... last_updated]_by VARCHAR(20) last_sync._date DATETIME position_number VARCHARIS)

b . d creation_date DATETIME deleter]_date DATETIME last_sync_action VARCHAR(10) primary_job VARCHAR(1)

y p e rS O n I created_by VARCHAR(20) pi=——= H daleted_by VARCHAR(20) ¥ Jab_type VARCHAR(30)
last_update_date DATETIME : last_syne_date DATETIME job_category VARCHAR[10)

(E M P L I D) Iast_updated_by VARCHAR(20} i last_syne_action VARCHAR{10) employment_type VARCHAR{20)
Geleted_date DATETIME : department_id VARCHAR] 10)
deleted_by VARCHAR[20) 1 manager_positian_number VARCHAR(S)

]
last_sync_date DATETIME 1 Incatian VARCHAR{10)
last_sync_action VARCHAR(10)] arganisation VARCHAR(S0)
| —_——
. . 1 full_time_equivakance DECIMAL(?,6)
O errective omng ' PR come
noement_date DATETIME
| date_of_birth DATETIME
| tesrmination_date DATETIME
I gendler VARCHAR(L) Jast_source_transactian_date DATETIME
—— S0 ransachan_oate
] PERSON_EMAIL_ADDRESSES ¥ - La url VARG

¥ person_id VARCHAR(11)
email_type VARCHAR({20)
email_address VARCHARI0}
lzst_source_trarsaction_date DATETIME
creation_gate DATETIME

date_of_death DATETIME
tast_child_upedate_date VARCHAR(45)
last_source_transaction_date DATETIME
creation_date DATETIME

creation_date DATETIME
created_by VARCHAR(20)
larst_updiate_date DATETIME
lasst_updated_by VARCHAR(2D)
deleted_date DATETIME

created_by VARCHAR(20)
created_by VARCHAR{2) B last_update_date DATETIME e by SRR
lest_update_date DATETIME tast_updated_by VARCHAR[ZD) st sime e DATETME
Iast_updistad_by VARCHAR(20} | deated_date pATETIHE N [——
deleted_date DATETIME deleted_by VARCHAR(ZD)
deleted_by VARCHAR(20) tast_syne_date DATETIME
last_sync_date DATETIME fast_sync_action VARCHAR{10) PERSON_ADDRESSES
last_syne_sction VARCHAR{10) 3 ¥
person_id VARCHAR[11}
1—* adress_type VARCHAR(4)
address] VARCHAR(SS)
?wm-mem b] PERSON_NAMES v atdress? VARCHAR(SS)
] PERSON_PHONES v 1 persen_id VARCHAR{LL) adress3 VARCHAR(SS)
academic_carear VARCHAR(4) 1 person_id VARCHAR{LL) narme_type VARCHAR(T} addressd VARCHAR{S5)
career_seq na INT phane_type VARCHAR(4) name_prefi: VARCHAR{4) city VARCHAR{30]
academic_pragram VARCHAR(S) country_code VARCHAR(S) first_name VARCHAR(30) state VARCHAR(E)
campus VARCHAR(S) phone_number VAREHAR(24) midle_name VARCHAR(3) postal_code VARCHAR{12)
pragram_status VARCHAR(S) ast_source,transaction_date DATETIME last_name VARCHAR(3D) < eountry VARCHAR{Z)
program_actian VARCHAR(4) crestion._date DATETIME niame_suffix VARCHAR{15) ast_saurce_transaction_date DATETIME
program_reag:n VARCHAR(4) created_by VARCHAR(20) display_rame VARCHAR(50) creation_date DATETIME
last_scurce_transaction_date DATETIME > -
last_update_date DATETIME last_source_tiansaction_date ... created_by VARCHAR{20)
. . . ::;-__:;;D;T&;:; last_updated_by VARCHAR(20) creation_date DATETIME last_update_data DATETIME
© University of the Sunshine Coast T — o o e

AUDIT HISTORY

Audit Column Name Audit Column Description

last_source_transaction_date The datetime that the last transaction was triggered
by the source system

creation_date The date the row was created

created_by The system that created the row

last_update_date The date the row was last updated

last_updated_by The system that updated the row

deleted date The date the row was soft deleted

deleted_by The system that deleted the row

last_sync_date The date the row was changed in any way (e.g.
created, updated, or deleted)

last_sync_action The last action that occurred for the row (e.g.
Create, Update, Delete, Undelete)

© University of the Sunshine Coast

Presenter
Presentation Notes
Every HUB live table has its own audit columns to track when a particular row was added, updated, or deleted.

An undelete also updates the last_update_date and last_updated_by fields.

SOFT DELETES

Rows will never be immediately hard deleted (i.e. removed from
the table).

Instead, the deleted_date and deleted_by fields will be
populated for a row when the row has been deleted.

Rows will eventually be hard deleted after a period of time
(currently set to 30 days).

Presenter
Presentation Notes
The Data Hub soft deletes data by way of marking a row’s deleted_date field with a datetime value representing the date and time that the row was soft deleted. These rows will eventually be removed from the Data Hub after 30 days. A SQL Server job currently initiates a stored procedure to perform the purge.

OTHER SYNCHRONISATION PROCESSES

HCM to CS Sync (real-time and batch)

Campus Solutions

CS to HCM Sync (real-time and batch) Sync

Human Capital
Data Hub Sync (batch run nightly) { Management —‘

Handles future dated rows

A fall-back mechanism that ensures data integrity whilst protecting against real-time
sync threats such as network outages and database downtimes.

© University of the Sunshine Coast ADU 9-11 NOVEMBER 2016

HCM TO CS SYNC OVERVIEW

HCM is the source of truth for staff and department details

Separate rules for each table to be synchronised. These
rules have been approved by the CS and HCM teams.

Synchronize
PS_DEPT_TBL PS_DEPT_TBL
Synchronize
PS_PERSONAL_PHONE PS_PERSONAL_PHONE
Synchronize
PS_NAMES PS_NAMES

Synchronize

© University of the Sunshine Coast

Presenter
Presentation Notes
Note: Different business owners are custodians of different data in HCM and CS systems.
E.g. HCM is the source of truth for all staff and department related details.

HCM TO (S SYNC TERMINOLOGY

— Only perform an action (e.g. add,
update or delete) when the staff member has no other
relationship (present or past) with the university (e.g. staff
member up until now has never been a student, POI, or
student applicant).

— Perform an action (e.g. add,
update or delete) regardless of whether the staff currently
has or has previously had a relationship with the university.

HCM TO €S SYNC RULES

Table Insert Rules Update Rules Delete Rules

PS_DEPT TBL Insert new rows Update existing rows Delete missing rows
PS_NAMES Non-conservative insert Non-conservative update Conservative delete
CITIZENSHIP Non-conservative insert Conservative update Conservative delete
PS_PERSONAL_PHONE Non-conservative insert Non-conservative update Conservative delete
PS_EMAIL_ADDRESSES Non-conservative insert Non-conservative update Non-conservative delete

© University of the Sunshine Coast

DATA HUB

iew

DEPLOYMENT AND MONITORING = ™™™

OCTOPUS DEPLOY

Used to deploy the Data Hub T-SQL code to the HUB and its connected
databases for all stages of the development lifecycle (DEV, UAT and
PRD).

Dynamically replaces variables in source code depending on the
development lifecycle.

Uses Powershell to deploy/load the T-SQL into the HUB and its
connected databases.

© University of the Sunshine Coast

Presenter
Presentation Notes
The Data Hub deployment system uses Octopus Deploy for both adhoc and release deployments. The deployment code has primarily been written in Powershell and is run from within Octopus Deploy. The Octopus Deploy system has been setup to help deploy the Data Hub T-SQL code to all of the databases. The deployment process involves generating the source code to deploy to the HUB database and its connected databases and then deploying and compiling that generated source code for those databases.

DEPLOYMENT TYPES

A deployment can be triggered in two ways:

On an adhoc basis
Primary way to re-deploy the Data Hub code.
Developer or DBA logs into Octopus Deploy and triggers a
deployment for a certain environment (DEV, UAT, PRD)

After a database refresh
HCM and CS refresh scripts issue a call to the Octopus
Deploy REST API to directly trigger a Data Hub deployment
after a database refresh.

© University of the Sunshine Coast

OCTOPUS DEPLOY

K

Data Hub Deployment

Release

l 2.0.0-release-

da13fs5e
Data Hub Deployment

Process
Variables

Releases

Settings

© University of the Sunshine Coast

Data Hub - DEV

2.0.0-release-
d813f56

Data Hub - S¥S

2.0.0-release-

d813f56

Data Hub - UAT

2.0.0-release-
d&13f56

Data Hub - PRD

Deploy

Dashboard

Environments

Data Hub - CPY

2.0.0-release-
d813f56

Projects v

0CTOPUS DEPLOY

Data Hub Deployment - Releases » 2.0.1-develop-19fe1f7 - Deploy to Data Hub - DEV

Task summary Task log

Task progress

L

Data Hub Deployment @ step 1: Clear Previous Load Report

] Deploy Data Hub Deployment release 2.0.1-develop-19felf7 to Data Hub - DEV

QAcqulre packages

O Step 2: Replace environment variables in source code

Overview
Q Step 3: Create Deployment Structure
Process @ step 4: send Notification Email - Daployment Startad
Variables Q Step 5: Update Release Information and hub status in HUB database

Step 6: Load Pre-Deploy Scripts
Releases Osep pioy P

Q Step 7: Load Security Definitions

settings

h (] Step 8: Load Initialisation Scripts

Q Step 9: Load Real-time Integration Sync Library

& step 10: Load Real-time Integration HR to SIS Sync Code (SIS Code)
Q Step 11: Load Real-time Integration HR to SIS Sync Code (HR Code)
@ step 12: Load Real-time Integration SIS to HR Sync Code (HR Code)
Q Step 13: Load Real-time Integration SIS to HR Sync Code (SIS Code)
@ step 14: Load Real-time Integration HR to HUB Code (HUB Code)
Q Step 15: Load Real-time Integration HR to HUB Code (HR Code)
] Step 16: Load Real-time Integration SIS to HUB Code (HUB Code)
Q Step 17: Load Real-time Integration SIS to HUB Code (SIS Code)

[Step 18: Load Real-time Integration SAM to HUB Code (HUB Code)
Q Step 19: Load Real-time Integration SAM to HUB Code (SAM Cade)
[Step 20: Load Batch Sync Process Code

Q Step 21: Load Diagnostics Code

[Step 22: Load Development Tools

O Step 23: Load Interfaces - Databee

Q Step 24: Load Interfaces - Corporate Web

O Step 25: Load Interfaces - GCC

Q Step 26: Load Post-Deploy Scripts

O Step 27: Perform Health Check

Q Step 28: Execute Batch Full Sync

@ step 29: Update hub status in HUB database

Q Step 30: Send Motification Email - Deployment Finished

© University of the Sunshine Coast @ step s eloyment e

QAppIy retention policy on Tentacles

Presenter
Presentation Notes
The deployment consists of a number of steps.

OCTOPUS DEPLOY VARIABLES

Variables

Include variable sets from the Library

Y | Name Value Scope
" HUB_DATABASE HUEBDEVY DEV
Data Hub Deployment ' HUB_DATABASE HUBUAT UAT
« HUB_DATABASE_SERVER MSJ-SQL-VS98 DEV
' HUB_DATABASE_SERVER M5U-5QL-V598 UAT
" EMAIL_DEPLOYMENT_NOTIFICATIONS_TO the_boss@usc.edu.au, the_dbas@usc.edu.au, the_developer@usc.edu.au PRD
Overview + EMAIL_DEPLOYMENT_NOTIFICATIONS_TO the_dbas@usc.edu.au, the_developer@usc.edu.au DEV, UAT

© University of the Sunshine Coast

Presenter
Presentation Notes
Octopus Deploy provides the ability to define environment-specific variables. This example shows a few of those variables and how they differ in value depending on the scope.

(TOPUS DEPLOY — RELEASE NOTES

Dashboard Environments Projects w Library Tasks . admin w Configuration ()

Data Hub Deployment : Releases

Releases

2.0.0-release-5e5d782

March 10, 201

mbled Thursday

Data Hub Deployment [200] - 2016-03-10

Create release

Added

REQO075184 - The Data Hub deployment system now uses Octopus Deploy for both adhoc and release deployments, The old pythonic system is ne longer in use, All python code that was used for previous deployments has been re-written in Powershell and is now run from
within Octopus Deploy. The deployment server has also been moved from the PeopleSoft database servers to the tfs servers and a new DataHub user has been created to initiate the deployments. The Data Hub T-SQL sourcecode has also been heavily modified to support the
Qverview Octopus Deploy deployment system.

Process REQ0075181 - The Data Hub now uses Git for source control. The Data Hub uses the git-flow methodology for Git. Release notes are collated and merged from different stages of development (feature, develop, merge, release) and are eventually merged into the
CHANGELOG.md file,

Variables
REQO0069262 - The Data Hub now retrieves a person's room location (in real-time) from the SAM system. The room location field is stored in the sam_location_code of the PERSON_RCOM_LOCATIONS table, The PERSON_ROOM_LOCATIONS key structure allows for multiple

Releases sam_location_code values for a person. Service Broker and Change Data Capture have been enabled on the SAM databases. The existing PERSON_LOCATIONS table has also been modified to store the campus and location values for a particular relationship_type.

Settings REQO075187 - The academic_organisation and split_ownership fields have been added to the ACADEMIC_PROGRAMS table in order to provide the ability to identify single ownership academic organisations for a particular academic program.

REQO075780 - A new HOLIDAY_SCHEDULE_DATES table has been added to the Data Hub to store date ranges for particular holiday schedules. Also, the CLASS_MEETING_PATTERNS table now contains additional metric fields in order to assist in providing more detailed
reporting of class schedules.

REQO071895 - New SIS to HR synchronisation processes (in both Real-time and Batch) have been created. Like its HR to SIS counterpart, the Batch process is initiated from the Data Hub Batch Full Sync process. At this stage, only the PS_LOCATION_TBL table is synchronised from
SIS to HR.

Changed

REQO071896 - The Batch HR to SIS Department delete logic has been modified such that it will only delete effective dated rows that are missing for the departments that are shared between the two systems. The Data Hub will not delete any exclusive department rows in SIS that
don't exist in HR. The Real-time HR to SIS Department delete logic will not change, since real-time deletes are in most cases intentional and thus should continue to flow through from HR to SIS,

REQO075186 - The Data Hub AD group and user security model has been redesigned. All security definitions for hub abjects (stored procedures and hub tables) are now stored in the HUB_SECURITY_TBL table. During a deployment, access is granted to the AD groups and users
at the time of creation of the object rather than at a later deployment step. This security model allows for deployments to be run at any time without affecting the security permissions of any subscribing systems. It also allows new users to be granted permissicns immediately

without requiring any further deployments.

REQ0075183 - All tables that contain the term field as part of their key, will now only retain data from the start of the previous year.

© University of the Sunshine Coast

HEALTH CHECK PROCESS

A stored procedure that is run:
Nightly

During a deployment

Verifies integrity of Data Hub and all connected systems by:
Checking for any SQL errors reported by the Data Hub
Checking for missing triggers on connected systems
Sending test messages from each connected system

Running unit tests (on development databases only)

© University of the Sunshine Coast

Presenter
Presentation Notes
The Data Hub health check is a stored procedure that reports back on the connection between the Data Hub and it’s connected databases. This is a useful procedure when trying to diagnose Data Hub real-time messaging issues.

HEALTH CHECK - EMAIL NOTIFICATIONS

datahub-deployment@usc.edu.au DG DBAdmins; M Jay Mathew; - Vg 26/07/2016
HUBPRD - Data Hub real-time monitor alert
6 Click here te downlead pictures, To help protect your privacy, Outlock prevented automatic downlead of some pictures in this message, o
3 HUB_HEALTH_CHECK... _ 3 HUE_ERROR_TEL.csv
Ldc| 482 bytes 45| 501 bytes
Action [tems + Get more add-ins
Data Hub monitor alert
The following shows the Data Hub monitor status for database HUBPRD.
Health Check status: 0
Errors have been recorded in HUB_ERROR_TBL table.
Please see the attached file(s) for specific errors to help diagnose the issue further
[«] | [+

© University of the Sunshine Coast

Presenter
Presentation Notes
If the nightly health check process failed, an email will be sent to all interested parties for the environment.

One or more csv files are usually attached to the email to help debugging the issue further.

CHALLENGES AND NEXT STEPS | where o fromheres

CHALLENGES

Service Broker learning curve
Examples provided by Microsoft are very simplistic and impractical

Heavy reliance on SQL for Service Broker administration

Lacking Ul utilities for debugging

Slow service broker queues during open enrolment periods

ADU 9-11 NOVEMBER 2016

NEXT STEPS

Enterprise Service Bus Integration
Publishing notifications from the Data Hub to the cloud

Web service support

ADU 9-11 NOVEMBER 2016

Senior Business Systems Analyst
University of the Sunshine Coast

imathew@usc.edu.au

ALL ALLIANCE PRESENTATIONS WILL BE AVAILABLE FOR
DOWNLOAD FROM THE CONFERENCE SITE

a1 e,

F s A
LIS

HEUG

HIGHER EDUCATION USER GROUF

HRustralian and New Zealand
Higher Education Usexr Group

-

ADU 9-11 NOVEMBER 2016

	USC’s Home Grown Identity Data Hub
	presenter
	University of the sunshine coast
	Peoplesoft
	Overview
	Data Hub earlier prototypes
	prototype #1
	prototype #2
	Data HUB final concept
	Data Hub final Concept
	Data Hub Interaction
	 Data Hub real-time Technologies
	 � Real-time scenario
	Person Information
	Person identity data
	 Relationship Types
	 Data Hub SCHEMA
	� Audit History
	 � Soft Deletes
	Other Synchronisation processes
	HCM to CS Sync overview
	HCM to CS Sync terminology
	HCM to CS Sync RULES
	Data Hub �deployment and monitoring
	Octopus deploy
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Octopus deploy variables
	Octopus deploy – release notes
	Slide Number 31
	Slide Number 32
	Challenges and next steps
	Challenges
	Next Steps
	presenters
	THANK YOU!

